Stock Market Forecasting Techniques: a Survey
نویسنده
چکیده
This paper surveys recent literature in the area of Neural Network, Data Mining, Hidden Markov Model and Neuro-Fuzzy system used to predict the stock market fluctuation. Neural Networks and Neuro-Fuzzy systems are identified to be the leading machine learning techniques in stock market index prediction area. The Traditional techniques are not cover all the possible relation of the stock price fluctuations. There are new approaches to known in-depth of an analysis of stock price variations. NN and Markov Model can be used exclusively in the finance markets and forecasting of stock price. In this paper, we propose a forecasting method to provide better an accuracy rather traditional method.
منابع مشابه
Forecasting the Tehran Stock market by Machine Learning Methods using a New Loss Function
Stock market forecasting has attracted so many researchers and investors that many studies have been done in this field. These studies have led to the development of many predictive methods, the most widely used of which are machine learning-based methods. In machine learning-based methods, loss function has a key role in determining the model weights. In this study a new loss function is ...
متن کاملBehavioral Finance Models and Behavioral Biases in Stock Price Forecasting
Stock market is affected by news and information. If the stock market is not efficient, the reaction of stock price to news and information will place the stock market in overreaction and under-reaction states. Many models have been already presented by using different tools and techniques to forecast the stock market behavior. In this study, the reaction of stock price in the stock market was ...
متن کاملProvide a stock price forecasting model using deep learning algorithms and its use in the pricing of Islamic bank stocks
Predicting stock prices is complicated; various components, such as the general state of the economy, political events, and investor expectations, affect the stock market. The stock market is in fact a chaotic nonlinear system that depends on various political, economic and psychological factors. To overcome the limitations of traditional analysis techniques in predicting nonlinear patterns, ex...
متن کاملFinancial time series forecasting with machine learning techniques: a survey
Stock index forecasting is vital for making informed investment decisions. This paper surveys recent literature in the domain of machine learning techniques and artificial intelligence used to forecast stock market movements. The publications are categorised according to the machine learning technique used, the forecasting timeframe, the input variables used, and the evaluation techniques emplo...
متن کاملForecasting Stock Price using Hybrid Model based on Wavelet Transform in Tehran and New York Stock Market
Forecasting financial markets is an important issue in finance area and research studies. On one hand, the importance of prediction, and on the other hand, its complexity, have led to huge number of researches which have proposed many forecasting methods in this area. In this study, we propose a hybrid model including Wavelet Transform, ARMA-GARCH and Artificial Neural Network (ANN) for single-...
متن کامل